
Guide to x86-64
A CS107 joint staff effort (Erik, Julie, Nate)

x86-64 (also known as just x64 and/or AMD64) is the 64-bit version of the x86/IA32 instruction set. Below is our overview of its

features that are relevant to CS107. There is more extensive coverage on these topics in Chapter 3 of the B&O textbook. See also

our x86-64 sheet (/class/cs107/onepage_x86-64.pdf) for a compact one-page reference.

Registers
The table below lists the commonly used registers (sixteen general-purpose plus two special). Each register is 64 bits wide; the

lower 32-, 16- and 8-bit portions are selectable by a pseudo-register name. Some registers are designated for a certain purpose,

such as %rsp being used as the stack pointer or %rax for the return value from a function. Other registers are all-purpose, but

have a conventional use depending on whether callercaller-saved or calleecallee-saved. If the function binky calls winky , we refer to

binky as the caller and winky as the callee. For example, the registers used for the first 6 arguments and return value are all

caller-saved. The callee can freely use those registers, overwriting existing values without taking any precautions. If %rax holds a

value the caller wants to retain, the caller must copy the value to a "safe" location before making a call. The caller-saved registers

are ideal for scratch/temporary use by the callee. In contrast, if the callee intends to use a callee-saved register, it must first

preserve its value and restore it before exiting the call. The callee-saved registers are used for local state of the caller that needs

to preserved across further function calls.

RegisterRegister Conventional useConventional use Low 32-bitsLow 32-bits Low 16-bitsLow 16-bits Low 8-bitsLow 8-bits

%rax Return value, caller-saved %eax %ax %al

%rdi 1st argument, caller-saved %edi %di %dil

%rsi 2nd argument, caller-saved %esi %si %sil

%rdx 3rd argument, caller-saved %edx %dx %dl

%rcx 4th argument, caller-saved %ecx %cx %cl

%r8 5th argument, caller-saved %r8d %r8w %r8b

%r9 6th argument, caller-saved %r9d %r9w %r9b

%r10 Scratch/temporary, caller-saved %r10d %r10w %r10b

%r11 Scratch/temporary, caller-saved %r11d %r11w %r11b

%rsp Stack pointer, callee-saved %esp %sp %spl

%rbx Local variable, callee-saved %ebx %bx %bl

%rbp Local variable, callee-saved %ebp %bp %bpl

%r12 Local variable, callee-saved %r12d %r12w %r12b

%r13 Local variable, callee-saved %r13d %r13w %r13b

%r14 Local variable, callee-saved %r14d %r14w %r14b

%r15 Local variable, callee-saved %r15d %r15w %r15b

%rip Instruction pointer

%rflags Status/condition code bits

https://web.stanford.edu/class/cs107/onepage_x86-64.pdf

Addressing modes
True to its CISC nature, x86-64 supports a variety of addressing modes. An addressing mode is an expression that calculates an

address in memory to be read/written to. These expressions are used as the source or destination for a mov instruction and

other instructions that access memory. The code below demonstrates how to write the immediate value 0 to various memory

locations in an example of each of the available addressing modes:

movl	$0,	0x604892												#	direct	(address	is	constant	value)

movl	$0,	(%rax)														#	indirect	(address	is	in	register	%rax)

movl	$0,	-24(%rbp)											#	indirect	with	displacement	(address	=	base	%rbp	+	displacement	-24)

movl	$0,	0xc(%rsp,	%rdi,	4)		#	indirect	with	displacement	and	scaled-index

																														(address	=	base	%rsp	+	displacement	0xc	+	index	%rdi	*	scale	4)

movl	$0,	(%rax,	%rcx,	8)					#	(special	case	of	scaled-index,	displacement	assumed	0)

movl	$0,	0x8(,	%rdx,	4)					#	(special	case	of	scaled-index,	base	assumed	0)

movl	$0,	0x4(%rax,	%rcx)						#	(special	case	of	scaled-index,	scale	assumed	1)

Common instructions
A note about instruction suffixes: many instructions have a suffix (b , w , l , or q) which indicates the bitwidth of the operation

(1, 2, 4, or 8 bytes, respectively). The suffix is often elided when the bitwidth can be determined from the operands. For example,

if the destination register is %eax , it must be 4 bytes, if %ax it must be 2 bytes, and %al would be 1 byte. A few instructions

such as movs and movz have two suffixes: the first is for the source operand, the second for the destination. For example,

movzbl moves a 1-byte source value to a 4-byte destination.

Mov and leaMov and lea

By far most frequent instruction you'll encounter is mov in one of its its multi-faceted variants. Mov copies a value from source

to destination. The source can be an immediate value, a register, or a memory location (expressed using one of the addressing

mode expressions from above). The destination is either a register or a memory location. At most one of source or destination

can be memory. The mov suffix (b, w, l, or q) indicates how many bytes are being copied (1, 2, 4, or 8 respectively). For the lea

(load effective address) instruction, the source operand is a memory location (using an addressing mode from above) and it

copies the calculated source address to destination. Note that lea does not dereference the source address, it simply calculates

its location. This means lea is nothing more than an arithmetic operation and commonly used to calculate the value of simple

linear combinations that have nothing to do with memory locations!

mov	src,	dst																	#	general	form	of	instruction	dst	=	src

mov	$0,	%eax																	#	register	%eax	=	0

movb	%al,	0x409892											#	write	to	memory	address	0x409892	=	low-byte	from	register	%eax

mov	8(%rsp),	%eax												#	register	%eax	=	value	read	from	memory	address	%rsp	+	8

lea	0x20(%rsp),	%rdi									#	register	%rdi	=	%rsp	+	0x20	(address,	no	dereference!)

lea	(%rdi,%rdi,1),	%rax						#	register	%rax	=	%rdi	+	%rdi	(looks	suspiciously	like	lea	being	used	for	ordinary	math)

The mov instruction copies the same number of bytes from one location to another. In situations where the move is copying a

smaller bitwidth to a larger, the movs and movz variants are used to specify how to fill the additional bytes, either sign-extend

or zero-fill.

movsbl	%al,	%edx													#	copy	low-byte	from	register	%eax,	sign-extend	to	4	byte	long	in	%edx

movzbl	%al,	%edx													#	copy	low-byte	from	register	%eax,	zero-extend	to	4	byte	long	in	%edx

A special case to note is that a mov to write a 32-bit value into a register also zeroes the upper 32 bits of the register by default,

i.e does an implicit zero-extend to bitwidth q. This explains use of instructions such as mov	%ebx,	%ebx that look

odd/redundant, but are, in fact, being used to zero-extend from 32 to 64. Given this default behavior, there is no need for an

explicit movzlq instruction. To instead sign-extend from 32-bit to 64-bit, there is an movslq instruction.

The cltq instruction is a specialized movs that operates on %rax . This no-operand instruction does sign-extension in-place on

%rax ; source bitwidth is l, destination bitwidth is q.

cltq																									#	operates	on	%rax,	sign-extend	4-byte	src	to	8-byte	dst,	shorthand	for	movslq	%eax,%rax.

Arithmetic and bitwise operationsArithmetic and bitwise operations

The binary operations are generally expressed in a two-operand form where the second operand is both a source to the

operation and the destination. The source can be an immediate constant, register, or memory location. The destination must be

either register or memory. At most one of source or destination can be memory. The unary operations have one operand which

is both source and destination, which can be either register or memory. Many of the arithmetic instructions are used for both

signed and unsigned types, i.e. there is not a signed add and unsigned add, the same instruction is used for both. Where needed,

the condition codes set by the operation can be used to detect the different kinds of overflow.

add	src,	dst																#	dst	+=	src

sub	src,	dst																#	dst	-=	src

imul	src,	dst															#	dst	*=	src

neg	dst																					#	dst	=	-dst	(arithmetic	inverse)

and	src,	dst																#	dst	&=	src

or	src,	dst																	#	dst	|=	src

xor	src,	dst																#	dst	^=	src

not	dst																					#	dst	=	~dst	(bitwise	inverse)

shl	count,	dst														#	dst	<<=	count	(left	shift	dst	by	count	positions),	synonym	sal

sar	count,	dst														#	dst	>>=	count	(arithmetic	right	shift	dst	by	count	positions)

shr	count,	dst														#	dst	>>=	count	(logical	right	shift	dst	by	count	positions)

#	some	instructions	have	special-case	variants	with	different	number	of	operands

imul	src																				#	single	operand	imul	assumes	other	operand	in	%rax,	computes	128-bit	result	and	stores

																												#	high	64-bits	in	%rdx,	low	64-bits	in	%rax

shl	dst																					#	dst	<<=	1					(no	count	=>	assume	1,	same	for	sar,	shr,	sal)

Branching instructionsBranching instructions

The special %flags register stores a set of boolean flags called the condition codes. Most arithmetic operations update those

codes. A conditional jump reads the condition codes to determine whether to take the branch or not. The condition codes include

ZF (zero flag), SF (sign flag), OF (overflow flag, signed), and CF (carry flag, unsigned). For example, if the result was zero, the ZF is

set, if a operation overflowed (into sign bit), OF is set.

The general pattern for all branches is to execute a cmp or test operation to set the flags followed by a jump instruction

variant that reads the flags to determine whether to take the branch or continue on. The operands to a cmp or test are

immediate, register, or memory location (with at most one memory operand). There are 32 variants of conditional jump, several

of which are synonyms as noted below.

cmpl	op2,	op1				#	computes	result	=	op1	-	op2,	discards	result,	sets	condition	codes

test	op2,	op1				#	computes	result	=	op1	&	op2,	discards	result,	sets	condition	codes

jmp	target							#	unconditional	jump

je		target							#	jump	equal,	synonym	jz	jump	zero	(ZF=1)

jne	target							#	jump	not	equal,	synonym	jnz	jump	non	zero	(ZF=0)

jl		target							#	jump	less	than,	synonym	jnge	jump	not	greater		(SF!=OF)

jle	target							#	jump	less	or	equal,	synonym	jng	jump	not	greater	or	equal	(ZF=1	or	SF!=OF)

jg		target							#	jump	greater	than,	synonym	jnle	jump	not	less	or	equal	(ZF=0	and	SF=OF)

jge	target							#	jump	greater	or	equal,	synonym	jnl	jump	not	less	(SF=OF)

ja		target							#	jump	above,	synonym	jnbe	jump	not	below	or	equal	(CF=0	and	ZF=0)

jb		target							#	jump	below,	synonym	jnae	jump	not	above	or	equal	(CF=1)

js		target							#	jump	signed	(SF=1)

jns	target							#	jump	not	signed	(SF=0)

Function call stackFunction call stack

The %rsp register is used as the "stack pointer"; push and pop are used to add/remove values from the stack. The push

instruction takes one operand: an immediate, a register, or a memory location. Push decrements %rsp and copies the operand

to be tompost on the stack. The pop instruction takes one operand, the destination register. Pop copies the topmost value to

destination and increments %rsp . It is also valid to directly adjust %rsp to add/remove an entire array or a collection of

variables with a single operation. Note the stack grows downward (toward lower addresses).

push	%rbx									#	push	value	of	%rbx	onto	stack

pushq	$0x3								#	push	immediate	value	3	onto	stack

sub	$0x10,	%rsp			#	adjust	stack	pointer	to	set	aside	16	more	bytes

pop	%rax										#	pop	topmost	value	from	stack	into	register	%rax

add	$0x10,	%rsp			#	adjust	stack	point	to	remove	topmost	16	bytes

Call/return are using to transfer control between functions. The callq instruction takes one operand, the address of the

function being called. It pushes the return address (current value of %rip) onto the stack and then jumps to that address. The

retq instruction pops the return address from the stack into the destination %rip , thus resuming at the saved return address.

To set up for a call, the caller puts the first six arguments into registers %rdi , %rsi , %rdx , %rcx , %r8 , and %r9 (any

additional arguments are pushed onto the stack) and then executes the call instruction.

mov	$0x3,	%rdi				#	first	arg	is	passed	in	%rdi

mov	$0x7,	%rsi				#	second	arg	is	passed	in	%rsi

callq	Binky							#	transfers	control	to	function	Binky

When callee finishes, it writes the return value (if any) to %rax , cleans up the stack, and use retq instruction to return control

to the caller.

mov	$0x0,	%eax				#	write	return	value	to	%rax

add	$0x10,	%rsp			#	deallocate	stack	frame

retq														#	return	from	currently	executing	function,	resume	caller

The target for a branch or call instruction is most typically an absolute address that was determined at compile-time. However

there are cases where the target is not known until runtime, such as a switch statement compiled into a jump table or when

invoking a function pointer. For these, the target address is computed and stored in a register and the branch/call variant is used

je	*%rax or callq	*%rax to read the target address from the specified register.

Assembly and gdb

The debugger has many features that allow you to trace and debug code at the assembly level. You can print the value in a

register by prefixing its name with $ or use the command info	reg to dump the values of all registers:

(gdb)	p	$rsp

(gdb)	info	reg

The disassemble command will print the disassembly for a function by name. The x command supports an i format which

interprets the contents of a memory address as an encoded instruction.

(gdb)	disassemble	main								//	disassemble	and	print	all	instructions	of	main

(gdb)	x/8i	main															//	disassemble	and	print	first	8	instructions	of	main

You can set a breakpoint a particular assembly instruction by its direct address or offset within a function

(gdb)	b	*0x08048375

(gdb)	b	*main+7															//	break	at	instruction	7	bytes	into	main

You can advance by instruction (instead of source line) using the stepi and nexti commands.

(gdb)	stepi

(gdb)	nexti

